Цветовая модель

Цветовая схема CMYK

Состоит из 4 основных цветов, расшифровка CMYK:

  • С (сyan) – синий – можно охарактеризовать как насыщенный голубой;
  • M (magenta) – малиновый – цвет, приближенный к темно-розовому или фуксии;
  • Y (yellow) – желтый – ортодоксальный привычный цвет без понижения или повышения тона;
  • K (key) – черный.

У нее меньший цветовой охват в сравнении с таблицей цветов RGB, однако именно она подходит для триадной печати. Для образования новых оттенков идет смешение трех цветов с добавлением черного. В данной цветовой модели не предусмотрен белый. Его невозможно получить смешением 3 цветов, как в случае с RGB. Белый получается только за счет оттенка самого материала.

На данный момент именно эта модель является стандартом в офсетной полноцветной печати в Европе, США, Японии. В большинстве случаев используется цветовая схема CMYK, при которой оттенки исчисляются от 0 до 100, однако есть и другая модель – CMYK 255. В ней оттенки исчисляются от 0 до 255. Приведем пример.

Допустим, требуется получить чисто черный, тогда показатели должны быть максимальными (в стандартной схеме – по 100), если же белый (то есть отсутствие цвета) – 0. Регулируя каждый из 4 показателей, можно добиться требуемого оттенка. Обычно для дизайнеров помощниками выступают специальные инструменты, как, например, пипетка в редакторе Photoshop. Она определяет не просто вид конкретного оттенка, но и его цветовую схему. Тогда для достижения идентичного результата (при множественном тираже или различных вариантах корпоративной продукции) достаточно знать цифровое значение каждого цвета в системе.

Цветовая модель HEX

Кодирование цвета в формате HEX — это, по сути, шестнадцатеричное представление рассмотренной выше модели RGB.

Все коды цветов этой модели представляются в комбинированном виде из триады цифр в шестнадцатеричной системе счисления, в которой каждая из трёх групп отвечает за свой составляющий цвет. Длина группы фиксированная – 2 символа. Такой подход позволяет всё так же указать 256 состояний нужного цветового коэффициента. Значения каждого из групп коэффициентов должны быть между 00 и FF.

Для браузеров возможна и упрощённая форма записи цвета в HEX-формате, где указываются всего три символа кода вместо 6. В таком случае, подразумевается что каждая из трёх групп состоит из одинаковых символов. Например, AAFF11, можно сократить до AF1.

Примеры передачи цвета в WEB при помощи HEX-модели для CSS-стилей элементов:

Помимо указанных особенностей, HEX-модель поддерживает и alpha-канал для управления прозрачностью, в таком случае добавляется четвертый коэффициента в диапазоне от 00 и FF (256 значений). В таком случае использование сокращённой формы записи уже недопустимо.

Пример передачи цвета в WEB при помощи HEXA-модели для CSS-стилей элементов:

Аддитивные красители

Аддитивное смешивание цветов: добавление красного к зеленому дает желтый; добавление зеленого к синему дает голубой; добавление синего к красному дает пурпурный цвет; сложение всех трех основных цветов вместе дает белый цвет.

По часовой стрелке от верхней: красный , оранжевый , желтый , зеленовато , зеленый , весенний , голубой , лазурный , синий , фиолетовый , пурпурный , и розы

Чтобы сформировать цвет с помощью RGB, три световых луча (один красный, один зеленый и один синий) должны быть наложены друг на друга (например, за счет излучения черного экрана или отражения от белого экрана). Каждый из трех лучей называется компонентом этого цвета, и каждый из них может иметь произвольную интенсивность, от полностью выключенного до полностью включенного, в смеси.

Цветовая модель RGB является аддитивной в том смысле, что три световых луча складываются вместе, а их световые спектры добавляют длину волны к длине волны, чтобы получить окончательный цветовой спектр. Это по сути противоположно субтрактивной цветовой модели, особенно цветовой модели CMY , которая применяется к краскам, чернилам, красителям и другим веществам, цвет которых зависит от отражения света, под которым мы их видим. Благодаря своим свойствам эти три цвета создают белый цвет, что резко контрастирует с физическими цветами, такими как красители, которые при смешивании создают черный цвет.

Нулевая интенсивность для каждого компонента дает самый темный цвет (отсутствие света, считается черным ), а полная интенсивность каждого компонента дает белый цвет ; качество этого белого зависит от характера первичных источников света, но если они надлежащий образом сбалансированы, то результат будет нейтральное белым соответствием системы белой точки . Когда интенсивности для всех компонентов одинаковы, в результате получается оттенок серого, более темный или светлый в зависимости от интенсивности. Когда интенсивности различаются, результатом является окрашенный оттенок , более или менее насыщенный в зависимости от разницы между самой сильной и самой слабой интенсивностями используемых основных цветов.

Когда один из компонентов имеет самую высокую интенсивность, цвет является оттенком, близким к этому основному цвету (красный, зеленый или синий), а когда два компонента имеют одинаковую максимальную интенсивность, тогда цвет является оттенком. из вторичного цвета (оттенок голубого , пурпурного или желтого цвета ). Вторичный цвет образуется суммой двух основных цветов равной интенсивности: голубой — зеленый + синий, пурпурный — синий + красный и желтый — красный + зеленый. Каждый вторичный цвет является дополнением одного основного цвета: голубой дополняет красный, пурпурный — зеленый, а желтый — синий. Когда все основные цвета смешиваются с одинаковой интенсивностью, получается белый цвет.

Сама цветовая модель RGB не определяет колориметрически, что подразумевается под красным , зеленым и синим , и поэтому результаты их смешивания указываются не как абсолютные, а относительно основных цветов. Когда точные цветности красного, зеленого и синего основных цветов определены, цветовая модель становится абсолютным цветовым пространством , например sRGB или Adobe RGB ; см. цветовое пространство RGB для получения более подробной информации.

LAB

Ну и раз уж мы говорим о цветовых моделях, то я не могу не рассказать о такой мvдели как LAB. Состоит эта модель из трех параметров:

  1. Luminance — освещенность. Градация идет от светлого к тёмному.
  2. Цвет A — гамма цветов от зеленого до пурпурного
  3. Цвет B — гамма цветов от голубого к желтому.

Как видите первые буквы параметров и составляют данную аббревиатуру. То есть данная модель предполагает смешивание двух цветов с определенной степенью освещенности. Чем примечательна эта модель, что она содержит в себе как цвета RGB, так и CMYK, да еще и градации серого, о которых мы говорили выше.

И если модель RGB отображает цвета так, как мы видим его на экране, а CMYK как на бумаге, то модель LAB соответствует человеческому зрению, т.е. как это видит обычный человек.

Система CMYK

Бумага является изначально белой. Это означает, что она обладает способностью отражать весь спектр цветов света, который на неё попадает. Чем качественнее бумага, чем лучше она отражает все цвета, тем она нам кажется белее. Чем хуже бумага, чем больше в ней примесей и меньше белил, тем хуже она отражает цвета, и мы считаем её серой. Сравните качество бумаги журнала «Плейбой» и газеты «Конотопский вестник», и почувствуйте разницу.

Противоположный пример — асфальт. Только что положенный хороший асфальт (без примесей гальки) — идеально чёрный. То есть на самом деле цвет его нам не известен, но он таков, что поглощает все цвета света, который на него падает и потому он нам кажется чёрным. Со временем, когда по асфальту начинают ходить пешеходы или ездить машины, он становится «грязным» — то есть на его поверхность попадают вещества, которые начинают отражать видимый свет (песок, пыль, галька). Асфальт перестаёт быть чёрным и становится «серым». Если бы нам удалось «отмыть» асфальт от грязи — он снова стал бы чёрным.

Красители представляют собой вещества, которые поглощают определённый цвет. Если краситель поглощает все цвета кроме красного, то при солнечном свете, мы увидим «красный» краситель и будем считать его «красной краской». Если мы посмотрим на это краситель при свете синей лампы, он станет чёрным, и мы ошибочно примем его за «чёрную краску».

Путём нанесения на белую бумагу различных красителей, мы уменьшаем количество цветов, которые она отражает. Покрасив бумагу определённой краской мы можем сделать так, что все цвета падающего света будут поглощаться красителем, кроме одного — синего. И тогда бумага нам будет казаться выкрашенной в синий цвет. И так далее.

Соответственно, существуют комбинации цветов, смешивая которые мы можем полностью поглотить все цвета, отражаемые бумагой, и сделать её чёрной. Опытным путём была выведена комбинация «циан-маджента-жёлтый» (CMY) — cyan/magenta/yellow.

В идеале, смешивая эти цвета, мы должны были бы получить чёрный цвет. Однако на практике так не получается из-за технических качеств красителя. В лучшем случае, что мы можем получить, — это темно-бурый цвет, который лишь отдалённо напоминает чёрный. Более того весьма неразумно было бы использовать все три дорогие краски только для того, чтобы получить элементарный чёрный цвет. Поэтому в тех местах, где нужен чёрный, вместо комбинации трёх красок наносится обычный более дешёвый чёрный краситель. И потому к комбинации CMY обычно добавляется буква K (Key — «ключевой», или blacK) — обозначающая чёрный цвет.

Белый цвет в схеме отсутствует, так как его мы и так имеем — это цвет бумаги. В тех местах, где нужен белый цвет, краска просто не наносится. Значит отсутствие цвета в схеме CMYK соответствует белому цвету.

Эта система цветов называется субтрактивной (subtractive), что в грубом переводе означает «вычитающая/исключающая». Иными словами, мы берём белый цвет (присутствие всех цветов) и, нанося и смешивая краски, удаляем из белого определённые цвета вплоть до полного удаления всех цветов — то есть получаем чёрный.

Качество изображения на бумаге зависит от многих факторов: качества бумаги (насколько она бела), качества красителей (насколько они чисты), качества полиграфической машины (насколько точно и мелко она наносит краски), качества разделения цветов (насколько точно сложное сочетание цветов разложено на три цвета), качества освещения (насколько полон спектр цветов в источнике света — если он искусственный).

Аддитивные и субтрактивные цветовые модели [ править ]

Цветовая модель RGB править

Среды, передающие свет (например, телевидение), используют аддитивное смешение цветов с основными цветамикрасным , зеленым и синим , каждый из которых стимулирует один из трех типов цветовых рецепторов глаза с минимальной стимуляцией двух других. Это называется цветовым пространством RGB ». Смеси света этих основных цветов покрывают большую часть цветового пространства человека и, таким образом, создают большую часть цветового восприятия человека. Вот почему цветные телевизоры или цветные компьютерные мониторы должны воспроизводить только смесь красного, зеленого и синего света. См. Добавочный цвет .

В принципе можно использовать и другие основные цвета, но с красным, зеленым и синим может быть захвачена самая большая часть цветового пространства человека . К сожалению, нет точного консенсуса относительно того, какие локусы на диаграмме цветности должны иметь красный, зеленый и синий цвета, поэтому одни и те же значения RGB могут давать немного разные цвета на разных экранах.

Цветовые модели CMY и CMYK править

Комбинируя голубой , пурпурный и желтый прозрачные красители / чернила на белой подложке, можно получить широкий диапазон цветов, видимых человеком . Это субтрактивные основные цвета . Часто четвертые чернила, черные , добавляются для улучшения воспроизведения некоторых темных цветов. Это называется цветовым пространством CMY или CMYK.

Голубые чернила поглощают красный свет, но отражают зеленый и синий, пурпурные чернила поглощают зеленый свет, но отражают красный и синий, а желтые чернила поглощают синий свет, но отражают красный и зеленый. Белая подложка отражает проходящий свет обратно к зрителю. Поскольку на практике чернила CMY, подходящие для печати, также отражают немного цвета, что делает невозможным глубокий и нейтральный черный цвет, компонент K (черные чернила), обычно печатаемый в последнюю очередь, необходим для компенсации их недостатков. Использование отдельных черных чернил также является экономически выгодным, когда ожидается большое количество черного содержимого, например, на текстовых носителях, чтобы уменьшить одновременное использование трех цветных чернил. Красители, используемые в традиционных цветных фотопринтах и слайдах. намного более прозрачны, поэтому компонент K обычно не требуется и не используется в этих средах.

Способы использования RGB

Прежде всего, цветовая модель RGB используется в устройствах, использующих цвет. Из-за того, что это аддитивная цветовая модель, которая выдает более светлые цвета, когда три основных смешанных цвета (красный, зеленый, синий) являются более насыщенными, RGB лучше всего подходит для отображения излучающего изображения. Другими словами, цветовая модель RGB лучше всего подходит для экранов с подсветкой, таких как телевизоры, мониторы компьютеров, ноутбуков, смартфонов и планшетов.

Для сравнения, CMYK, что означает «Cyan Magenta Yellow Key (Black)» и является производным от CMY, является отражающей цветовой моделью, означающей, что его цвета отражаются, а не освещаются, и используются в основном в печати. Вот почему при калибровке принтера вы работаете с цветовым пространством CMY, а при калибровке дисплея компьютера — с RGB.

Принтеры используют цветовую модель CMYK

Помимо телевизоров и других электронных дисплеев, цветовая модель RGB также используется в других устройствах, работающих с подсвеченными цветами, таких как фото и видеокамеры или сканеры.

Например, ЖК-экраны состоят из множества пикселей, которые образуют их поверхность. Каждый из этих пикселей обычно состоит из трех разных источников света, и каждый из них может стать красным, зеленым или синим. Если вы внимательно посмотрите на ЖК-экран, используя увеличительное стекло, вы увидите эти маленькие источники света, которые образуют пиксели.

Однако, когда вы смотрите на него, как обычный человек, без увеличительного стекла, вы видите только цвета, испускаемые этими крошечными источниками света в пикселях. Комбинируя красный, зеленый и синий и регулируя их яркость, пиксели могут создавать любой цвет.

Источники RGB пикселей на экране

RGB также является наиболее широко используемой цветовой моделью в программном обеспечении. Чтобы иметь возможность указать определенный цвет, цветовая модель RGB описывается тремя числами, каждое из которых представляет интенсивность красного, зеленого и синего цветов.

Однако диапазоны трех чисел могут различаться в зависимости от того, какую систему исчисления вы используете. Стандартные нотации RGB могут использовать тройки значений от 0 до 255, некоторые могут использовать арифметические значения от 0,0 до 1,0, а некоторые могут использовать процентные значения от 0% до 100%.

Например, если цвета RGB представлены 8 битами каждый, это будет означать, что диапазон каждого цвета может изменяться от 0 до 255, 0 — самая низкая интенсивность цвета, а 255 — самая высокая. Используя эту систему обозначений, RGB (0, 0, 0) будет означать черный, а RGB (255, 255, 255) будет означать белый. Кроме того, самый чистый красный будет RGB (255, 0, 0), самый чистый зеленый будет RGB (0, 255, 0), а самый чистый синий будет RGB (0, 0, 255).

Представление цветов RGB в 8-битной системе, каждый цвет в диапазоне от 0 до 255

Диапазон чисел от 0 до 255 выбран не случайно: RGB часто представлен в программном обеспечении 8-битами на канал. Если вам интересно, почему 255 является максимальным значением в 8-битной исчислении, так это потому, что каждый цвет в нем представлен 8 битами. Бит может иметь два значения: 0 или 1. Два бита, будут иметь четыре значения: 00, 01, 10, 11. (в двоичной системе.) Таким образом, восемь битов, дадут 256 значений — от 0 до 255. То есть, два в восьмой степени. Гики, верно?

Однако обычно используются и другие системы исчисления, такие как 16-бит на канал или 24-бит на канал. Например, в 16-битной системе, каждый бит может принимать значения от 0 до 65535, а в 24-битной системе — от 0 до 16777215. 24-битная система охватывает 16 миллионов цветов, что больше, чем все цвета, которые видны человеческому глазу, который различает 10 миллионов.

RGB в печати

Цветовая гамма в RGB — это общее количество цветов, которые можно распечатать. Существует много видов: sRGB (наименьшая гамма), Adobe RGB (средняя гамма), Adobe Wide Gamut RGB, ProPhoto RGB (самая большая гамма), scRGB и CIE RGB. CIE LAB — это цветовая гамма, которую может видеть человеческий глаз, и современные технологии до сих пор не смогли воспроизвести этот диапазон при печати. Треугольники ниже показывают отношение каждой гаммы печати к человеческому глазу, которое представлено спектром в форме подковы. Предполагается, что для печати можно создать как минимум 2 миллиона комбинаций RGB.

                                                                                                             Image credit: Colour management

RGB-печать выполняется на черном фоне, что невозможно с CMYK, поскольку черный цвет — это цвет, полученный при добавлении большего количества цветов в этой цветовой модели. Более того, отпечатки RGB создают мерцание и изысканность, которых нет в CMYK, и поэтому они очень востребованы производителями предметов роскоши и украшений.

RGB (Красный Зеленый Синий)

Ну вот мы и перешли к основной цветовой модели. Именно ей мы и будем в основном пользоваться в фотошопе. Эта модель используется для отображения цветов именно на экране. Все цвета и оттенки получаются при смешивании трех основных цветов, т.е. красного (Red), зеленого (Green) и синего (Blue). Вы спросите: «А где же желтый цвет? Ведь его невозможно получить, смешивая эти цвета». Как раз таки получается, но не на бумаге, а на экране монитора. Желтый цвет мы можем получить смешивая красный и зеленый цвета. Вот такая вот хитрость.

Цветов в этой модели целая уйма! В 8-битном представлении их аж 16 миллионов! Вы представьте сколько их будет в 16 и 32-х битах? Поэтому сразу заклинаю вас — выбирайте только 8-битное представление RGB, так как в остальных смысла нет, по крайней мере в обычной жизни. Будем считать, что договорились.

Цветовая модель СMYK — так получают цвет из красок

Эта модель построена на смешении четырёх типографских красок: Cyan (сине-зелёный), Magenta (пурпурный), Yellow (жёлтый) и Key («ключевой» цвет — чёрный). Диапазон цветов на печати гораздо более узкий, чем на современных мониторах компьютеров. Модель СMYK позволяет увидеть на электронных устройствах, как изменятся цвета на бумаге.

В модели CMYK каждый цвет кодируется четырьмя координатами, значения которых могут быть от 0 до 100%. Разные оттенки получаются из-за разных соотношений голубого, розового, жёлтого и черного цвета в их составе. Белый цвет в модели CMYK — это отсутствие краски.

Так выглядит любая напечатанная картинка при большом увеличении:


Новые цвета получаются путём наложения трёх основных друг на друга в разных пропорциях

Согласно идеальной модели, розовый, голубой и жёлтый на печати в сумме дают чёрный. Для чего тогда требуется четвёртая чёрная краска? Есть несколько причин:

  • Красители, созданные с помощью химических веществ, не идеальны. На практике смешение трёх красок обычно даёт грязно-коричневый цвет.
  • Цветные краски дороже. Например, если нам нужен тёмно-красный цвет, можно составить его из красного, синего и зелёного, а можно — из красного и чёрного. Второй вариант обойдётся дешевле при печати.
  • У бумаги ограничена впитывающая способность. Чтобы получить максимально близкий к чёрному цвет, используя голубой, розовый и жёлтый, на лист нанесут 300% краски — газетная бумага такого не выдержит. А чистый чёрный цвет — это всего лишь 100% процентов краски.

CMYK

C дет­ства мы пом­ним, что если сме­шать крас­ный и жёл­тый цве­та, то полу­чит­ся оран­же­вый, а если голу­бой и жёл­тый — то будет зелё­ный. Мы сме­ши­ва­ли эти крас­ки на палит­ре и рисовали. 

В прин­ци­пе, сме­ши­вать мож­но было не на палит­ре, а на самом листе: мож­но было нари­со­вать светло-голубой листо­чек, потом прой­тись свер­ху про­зрач­ным жёл­тым, и полу­чил­ся бы зелё­ный листо­чек. Так дела­ют, когда рису­ют акварелью.

При­мер­но так же рабо­та­ют все совре­мен­ные прин­те­ры и печат­ные стан­ки. В них зали­то несколь­ко кра­сок. Сна­ча­ла прин­тер про­хо­дит одним цве­том, потом дру­гим, потом тре­тьим, как бы сме­ши­вая эти цве­та на листе. И полу­ча­ют­ся цвет­ные изображения. 

Что­бы давать прин­те­ру ука­за­ния, где какую крас­ку нано­сить, исполь­зу­ют цве­то­вую модель CMYK.

CMYK — это ком­пью­тер­ная цве­то­вая модель, кото­рая ими­ти­ру­ет сме­ши­ва­ние кра­сок на бума­ге. Пер­вые три бук­вы — это назва­ния цве­тов, из кото­рых всё смешивается: 

Cyan — голубой 

Magenta — пурпурный 

Yellow — жёлтый

Сме­ши­вая в раз­ных про­пор­ци­ях эти цве­та, мы можем полу­чить на бума­ге оттен­ки любо­го цвета. 

CMYK исполь­зу­ют для раз­ра­бот­ки поли­гра­фи­че­ской про­дук­ции, то есть для все­го, что печа­та­ет­ся на бума­ге. Модель CMYK гово­рит прин­те­ру или печат­но­му стан­ку: «Вот тут нане­си пур­пур­но­го, а там нане­си голу­бо­го, тут всё залей жёл­тым». И если прин­тер пра­виль­но всё нане­сёт, полу­чит­ся нуж­ное нам цвет­ное изображение. 

Напри­мер, если прин­те­ру пору­чат напе­ча­тать одну из наших обло­жек, он вос­при­мет эту инструк­цию так:

Вид­но, что синий цвет пены полу­ча­ет­ся от сме­ши­ва­ния попо­лам голу­бо­го и розо­во­го. Крас­ный цвет стен сме­ши­ва­ет­ся из пур­пур­но­го и жёл­то­го. А цвет кожи — это жёл­тый с неболь­шим добав­ле­ни­ем пур­пур­но­го. И отдель­но нано­сят­ся чёр­ные линии. 

Что­бы полу­чить чёр­ный цвет, мож­но сме­шать все три базо­вых цве­та, но появит­ся про­бле­ма: бума­ге нуж­но будет впи­тать доволь­но мно­го крас­ки. Если на кар­тин­ке будет мно­го чёр­но­го, бума­га раз­мяк­нет и может испор­тить­ся. А ещё от сме­ше­ния всех цве­тов мы в реаль­но­сти полу­чим не чёр­ный, а ско­рее грязно-коричневый.

Реше­ние при­ду­ма­ли такое: доба­вить в модель чёр­ный цвет. Так появи­лась модель CMYK: Cyan, Magenta, Yellow, Black. Чёр­ный исполь­зу­ют, что­бы печа­тать текст и допол­ни­тель­но под­кра­ши­вать чёр­ные участ­ки изображений.

Обра­ти­те вни­ма­ние, что цве­та на этой кар­тин­ке не «вырвиглаз­ные» и яркие, а при­глу­шён­ные. Это ком­пью­тер пыта­ет­ся отоб­ра­зить на экране, как эти цве­та будут выгля­деть на бумаге 

Модель RGB и соотношение форматов яркости и цветности

Все яркости — цветности форматов , используемых в различных телевизионных и видео стандартов , таких как YIQ для NTSC , YUV для PAL , YD B D R для СЕКАМ , и YP B P R для видео компонент разностных использования цветовых сигналов, с помощью которых RGB цветного изображения может быть закодированы для трансляции / записи, а затем снова декодированы в RGB для их отображения. Эти промежуточные форматы были необходимы для совместимости с существовавшими ранее форматами черно-белого телевидения. Кроме того, эти цветоразностные сигналы требуют меньшей полосы пропускания данных по сравнению с полными сигналами RGB.

Аналогичным образом , ток высокой эффективности цифровых цветных изображений сжатия данных схемы , такие как JPEG и MPEG — магазине RGB цвета внутри в YC B C R формате, в цифровом формате яркости-цветности на основе YP B P R . Использование YC B C R также позволяет компьютерам выполнять субдискретизацию с потерями с каналами цветности (обычно до соотношений 4: 2: 2 или 4: 1: 1), что уменьшает размер результирующего файла.

Аддитивные и субтрактивные цветовые модели

Цветовая модель RGB

Среды, передающие свет (например, телевидение), используют аддитивное смешение цветов с основными цветами — красным , зеленым и синим , каждый из которых стимулирует один из трех типов цветовых рецепторов глаза с минимальной стимуляцией двух других. Это называется цветовым пространством « RGB ». Смеси света этих основных цветов покрывают большую часть цветового пространства человека и, таким образом, создают большую часть цветового восприятия человека. Вот почему цветные телевизоры или цветные компьютерные мониторы должны воспроизводить только смесь красного, зеленого и синего света. См. Добавочный цвет .

В принципе можно использовать и другие основные цвета, но с красным, зеленым и синим может быть захвачена самая большая часть цветового пространства человека . К сожалению, нет точного консенсуса относительно того, какие локусы на диаграмме цветности должны иметь красный, зеленый и синий цвета, поэтому одни и те же значения RGB могут давать немного разные цвета на разных экранах.

Цветовые модели CMY и CMYK

Комбинируя голубой , пурпурный и желтый прозрачные красители / чернила на белой подложке, можно получить широкий диапазон цветов, видимых человеком . Это субтрактивные основные цвета . Часто четвертые чернила, черные , добавляются для улучшения воспроизведения некоторых темных цветов. Это называется цветовым пространством CMY или CMYK.

Голубые чернила поглощают красный свет, но отражают зеленый и синий, пурпурные чернила поглощают зеленый свет, но отражают красный и синий, а желтые чернила поглощают синий свет, но отражают красный и зеленый. Белая подложка отражает проходящий свет обратно к зрителю. Поскольку на практике чернила CMY, подходящие для печати, также отражают немного цвета, что делает невозможным глубокий и нейтральный черный цвет, компонент K (черные чернила), обычно печатаемый в последнюю очередь, необходим для компенсации их недостатков. Использование отдельных черных чернил также является экономически выгодным, когда ожидается большое количество черного содержимого, например, на текстовых носителях, чтобы уменьшить одновременное использование трех цветных чернил. Красители, используемые в традиционных цветных фотопринтах и слайдах , намного более прозрачны, поэтому компонент K обычно не требуется и не используется в этих материалах.

Добро пожаловать в радугу RGB освещения

Начиная с программного обеспечения и заканчивая аппаратным обеспечением, RGB — это все, и одним из самых модных способов использования RGB в современном мире является освещение RGB. Мы говорим об использовании RGB-светодиодов для освещения не только наших экранов, но и задних панелей наших мониторов, телевизоров, игровых аксессуаров, таких как клавиатуры и мыши, материнские платы, видеокарты, корпуса ПК, процессорные кулеры, вентиляторы и даже игровые кресла. !

Освещение RGB проникло в огромное количество устройств и даже в мебель. Хотя некоторые люди думают, что это довольно глупо, другие думают, что это круто. Любите ли вы радугу или предпочитаете освещать все одним цветом, RGB позволяет вам это сделать.

Но как работает освещение RGB? Ответ проще, чем вы думаете, и все это относится к тому, что означает RGB: красный, зеленый, синий . По сути, все устройства и светильники с подсветкой RGB имеют полоски или пучки светодиодов RGB. Светодиод RGB представляет собой сочетание трех разноцветных светодиодов, соединенных вместе: один красный светодиод, один зеленый светодиод и один синий светодиод.

Комбинируя три светодиода, смешивая их интенсивность цвета и яркость, вы можете получить практически любой цвет, какой пожелаете. То есть, если вы не смотрите на светодиоды слишком близко.

Возможно, лучшая реализация RGB-освещения — это та, которую мы все чаще видим в игровых компьютерах. Одна из лучших вещей в этом — то, что вы можете использовать программное обеспечение для настройки и адаптации световых эффектов RGB вашего компьютера, как вы хотите. В качестве примера можно привести программное обеспечение ASUS Aura, которое позволяет синхронизировать световые эффекты RGB и даже иметь специальные внутриигровые эффекты, которые настраиваются на лету в зависимости от действий в вашей игре.

В любом случае, после того, как вы перейдете на RGB-путь, вам, вероятно, понравится, благодаря степени персонализации, которую вы получаете.

У вас есть другие вопросы, касающиеся RGB?

Это было только краткое объяснение того, что такое RGB и для чего он используется. Это сложный вопрос со сложными последствиями во многих технологиях и отраслях, связанных как с аппаратным, так и программным обеспечением. Таким образом, мы уверены, что у вас могут возникнуть дополнительные вопросы о RGB, поэтому, если вы это сделаете, задайте их в разделе комментариев ниже, и мы обещаем сделать все возможное, чтобы помочь вам найти ответы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector