Подборка 3d моделей солнечной системы
Содержание:
- Очередность орбит
- История становления современных астрономических взглядов
- Пояса из астероидов и ледяных комет
- Спутники
- Как происходит трансляция?
- Внутренняя Солнечная система
- Спутники Юпитера
- Карликовые планеты
- Доклад на тему планеты солнечной системы
- Строение и характеристики Солнца
- Рабочая схема ADS-B
- FLASH Модель Солнечной системы
- Солнце — основной источник энергии на Земле.
- График солнечной активности за последние 400 лет
- Спутники Юпитера
- Строение Cолнечной системы
Очередность орбит
Каждая планета обладает определенной орбитой, по которой вращается вокруг Солнца. Время, которое она тратит на то, чтобы вернуться в ту же точку, пройдя полный круг, называется годом, чаще всего он измеряется в земных сутках.
- Меркурий находится ближе всех к Солнцу, из-за чего вращается вокруг него по наименьшей орбите, и год на нем длится 88 суток;
- Венера совершает полный оборот вокруг звезды за 224 дня;
- для Земли год длится 365 суток;
- Марс полный оборот совершает практически в два раза дольше, чем третья планета: за 687 дней;
- Юпитер, являющийся ближайшим газообразным гигантом к Солнцу, обладает продолжительностью года в 4332 дня;
- Сатурн делает полный оборот за 10759 суток – это почти 30 земных лет;
- являясь практически самой отдаленной планетой от Солнца, Уран проходит по окружности за 30685 дней;
- Нептун обладает наибольшей орбитой, и ему приходится пройти самое большое расстояние в течение своего года, который длится 60190 суток – почти 165 лет.
Также каждая планета вращается вокруг своей оси с определенной скоростью, из-за чего длительность суток на них отличается.
История становления современных астрономических взглядов
Схематическое изображение Солнечной системы и космических аппаратов покидающих ее пределы
Сегодня гелиоцентрическая модель Солнечной системы является непреложной истиной. Но так было не всегда, а до тех пор пока польский астроном Николай Коперник не предложил идею (которую высказывал еще Аристарх) о том, что не Солнце вращается вокруг Земли, а наоборот. Следует помнить, что некоторые до сих пор думают, что Галилео создал первую модель Солнечной системы. Но это заблуждение, Галилей всего лишь высказывался в защиту Коперника.
Модель Солнечной системы по Копернику не всем пришлась по вкусу и многие его последователи, например монах Джордано Бруно, были сожжены. Но модель по Птолемею не могла полностью объяснить наблюдаемых небесных явлений и зерна сомнений, в умах людей, были уже посажены. К примеру геоцентрическая модель не была в состоянии полностью объяснить неравномерность движения небесных тел, например попятные движения планет.
В разные этапы истории существовало множество теорий устройства нашего мира. Все они изображались в виде рисунков, схем, моделей. Тем не менее, время и достижения научно-технического прогресса расставили все на свои места. И гелиоцентрическая математическая модель Солнечной системы это уже аксиома.
Пояса из астероидов и ледяных комет
Помимо планет, наша система содержит сотни спутников (у одного Юпитера их 62 штуки), миллионы астероидов и миллиарды комет. Также между орбитами Марса и Юпитера существует пояс астероидов и интерактивная модель Солнечной системы флеш его наглядно демонстрирует.
Пояс Койпера
Объекты пояса Койпера
Пояс остался со времен образования планетной системы, а после орбиты Нептуна простирается пояс Койпера, в котором до сих пор скрываются десятки ледяных тел, некоторые из которых даже больше Плутона.
Облако Оорта
И на расстоянии 1-2 светового года располагается облако Оорта, поистине гигантская сфера, опоясывающая Солнце и представляющая собой остатки строительного материала, который был выброшен после окончания формирования планетной системы. Облако Оорта столь велико что мы не в состоянии показать вам его масштаб.
Облако Оорта
Облако Оорта регулярно поставляет нам долгопериодические кометы, которым требуется порядка 100000 лет чтобы добраться до центра системы и радовать нас своим повелением. Однако не все кометы из облака переживают встречу с Солнцем и прошлогоднее фиаско кометы ISON яркое тому подтверждение. Жаль, что данная модель системы флеш, не отображает столь мелкие объекты как кометы.
Спутники
AOBA-VELOX 4
12.01.2019 | Космические аппараты (спутники) Японии
AOBA-VELOX 4 – это совместная сингапурская и японская наноспутниковая миссия для демонстрации технологии по наблюдению за лунным горизонтом.
OrigamiSat 1
12.01.2019 | Космические аппараты (спутники) Японии
OrigamiSat 1 — 3U CubeSat, разработанный в Токийском технологическом институте (TITech) для демонстрации современной мембранной космической структуры на орбите.
NEXUS
08.01.2019 | Космические аппараты (спутники) Японии
NEXUS (NExt Generation X Unique Satellite) — представляет собой 1U CubeSat для демонстрации любительской спутниковой связи нового поколения.
Hodoyoshi 2 / RISESat
08.01.2019 | Космические аппараты (спутники) Японии
Hodoyoshi 2 / RISESat (Rapid International Scientific Experiment Satellite) — небольшой японский спутник для наблюдения Земли, а также тестирования ряда…
ALE 1, 2
08.01.2019 | Космические аппараты (спутники) Японии
ALE 1 (Astro Live Experiences 1) — это небольшой демонстрационный спутник японской компании Astro Live Experiences. На орбите ALE 1…
RAPIS 1
08.01.2019 | Космические аппараты (спутники) Японии
RAPIS 1 (Rapid Innovative Payload Demonstration Satellite 1) – небольшой японский спутник, предназначенный для тестирования новых технологий в космосе.
Как происходит трансляция?
Благодаря тому, что камеры находятся на Международной станции, нам заметные даже незначительные детали, которые комментируются учеными, космонавтами и профессиональными журналистами. Однако наша Земля онлайн со спутника в реальном времени видна благодаря труду целого комплекса людей и машин — кроме уже упомянутых космонавтов и Центра управления, в процессе задействованы спутниковые технологии передачи связи, солнечные батареи питания и технические специалисты, занимающиеся переводом и декодированием данных. Соответственно, в трансляции есть свои нюансы — их знание поможет вам увидеть больше и лучше понимать происходящее на экране.
Наша точка наблюдения, орбитальная станция, движется с громадной скоростью — почти 28 тысяч километров в час, и облетает Землю за 90-92 минуты. Половину этого времени, 45 минут, станция висит на ночной стороне. И хотя на подлете солнечные батареи камер могут питаться светом заката, в глубине электричество исчезает — поэтому планета Земля со спутника не всегда доступна. В такие моменты экран трансляции становится серым; стоит немного подождать, и вы будете встречать рассвет вместе с космонавтами.
Дабы найти лучшее время для наблюдений, вам пригодится наша специальная карта Земли со спутника — на ней отмечается не только время прохождения космической станции, но и точное ее положение. Так можно узнать, когда увидеть свой город с космической высоты, или же найти станцию на небе с биноклем или телескопом!
Внутренняя Солнечная система
Это линия с первыми 4-мя планетами от звезды. Все они обладают похожими параметрами. Это скалистый тип, представленный силикатами и металлами. Расположены ближе, чем гиганты. Уступают по плотности и размерам, а также лишены огромных лунных семейств и колец.
Силикаты формируют кору и мантию, а металлы являются частью ядер. Все, кроме Меркурия, располагают атмосферным слоем, который позволяет формировать погодные условия. На поверхности заметны ударные кратеры и тектоническая активность.
Ближе всех к звезде находится Меркурий. Это также наиболее крошечная планета. Магнитное поле достигает всего 1% от земного, а тонкая атмосфера приводит к тому, что планета наполовину раскалена (430°C) и замерзает (-187°C).
Современный вид Марса
Венера сходится по размеру с Землей и обладает плотным атмосферным слоем. Но атмосфера крайне токсична и работает в качестве парника. На 96% состоит из углекислого газа, вместе с азотом и прочими примесями. Плотные облака созданы из серной кислоты. На поверхности много каньонов, наиболее глубокий из которых достигает 6400 км.
Земля изучена лучше всего, потому что это наш дом. Обладает скалистой поверхностью, укрытой горами и углублениями. В центре находится тяжелое ядро из металла. В атмосфере присутствует водяной пар, что сглаживает температурный режим. Рядом вращается Луна.
Из-за внешнего вида Марс получил кличку Красная планета. Окрас создается окислением железных материалов на верхнем слое. Наделен самой крупной горой в системе (Олимп), возвышающейся на 21229 м, а также глубочайшим каньоном – Долина Маринер (4000 км). Большая часть поверхности древняя. На полюсах есть ледяные шапки. Тонкий атмосферный слой намекает на водные залежи. Ядро твердое, а рядом с планетой присутствует два спутника: Фобос и Деймос.
Спутники Юпитера
Галилеевы спутники
Как выглядели бы спутники Юпитера в небе Земли
Всего у Юпитера насчитывается 63 спутника, из них выделяют группу галилеевых – Европа, Ио, Ганимед и Каллисто. Они были названы галилеевыми, так как их открыл Галилео Галилей в 1610 году с помощью первой своей подзорной трубы.
Самым близким к Юпитеру является спутник Ио (Io), который по размерам похож на Луну. Он имеет самую большую геологическую активность среди всех тел системы – на нем зарегистрировано более 400 действующих вулканов, из жерл которых постоянно извергается магма и газы. Поэтому Ио имеет красивую ярко-желтую окраску, которую предают ему сера и расплавленные силикатные породы. Частые извержения вулканов возникают под действием гравитационного поля Юпитера и других спутников.
Наша модель показывает и другой галилеевый спутник Европу (Europa) – второй от Юпитера спутник. Радиус Европы немного меньше радиуса Луны, а масса самая большая среди всех спутников. Это объясняется высокой плотностью, так как она состоит в основном из силикатных пород. Поверхность Европы полностью покрыта слоем льда. Возможно, под этим слоем существует океан из жидкой воды, на дне которого есть все условия для жизни.
Каллисто (Callisto) – второй по размеру галилеевый спутник. По порядку размещения от Юпитера он самый дальний среди галилеевых спутников. Диаметр Каллисто почти равен диаметру планеты Меркурий, а масса – 1/3 массы Меркурия. Его поверхность покрыта кратерами и многокольцевыми структурами. По количеству кратеров Каллисто опережает Луну и Меркурий.
Другие спутники Юпитера
Фива или Тебе (Thebe) – четвертый от Юпитера спутник, который был открыт С. Синнотом в 1979 году. Он имеет неправильную форму и практически круговую орбиту. Диаметр Фивы 100-110 км, она всегда обращена к Юпитеру одной стороной. На поверхности Фивы имеются большие кратеры.
Карликовые планеты
Карликовые планеты
Эта группа небесных тел пока что остается наименее изученной ввиду их удаленности от центра нашей системы, но благодаря постоянному развитию технологий астрономы постоянно восполняют пробелы в своих знаниях. 2003-2005 года были довольно «урожайными» на открытия. Современные технологии позволяет увидеть даже самый удалённый объект.
Плутон
Полумесяц Плутона
Один из самых маленьких объектов Солнечной системы, радиусом всего 1153 км. Период обращения по орбите вокруг Солнца составляет 90 613 суток (около 248 лет), а оборот вокруг своей оси занимает 6,4 земных суток. Несколько десятилетий с момента открытия в 1930 году считался девятой планетой, пока в 2006 году астрономы не пришли к выводу, что его всё-таки стоит причислить к карликовым планетам в поясе Койпера, получившим своё название после открытия в 2005 году нескольких подобных Плутону объектов.
Спутников, сопровождающих его, на данный момент известно 5 – Харон, крупнейший из них, Кербер, Никта, Стикс и Гидра. Орбита этой карликовой планеты эллиптическая, вытянута довольно сильно.
Лишь несколько лет назад учёным удалось измерить температуру на поверхности этого небесного тела. 14 июля 2015 года космический аппарат Новые Горизонты совершил близкий пролет вблизи Плутона и передал множество данных и фотографий о нем.
Хаумеа
Снимок Хаумеи со спутниками
Самая быстровращающаяся из всех планет, известных на сегодняшний день в нашей системе – один оборот вокруг собственной оси занимает всего 4 часа, в то же время как полный облёт Солнца занимает 102937 суток (почти 282 года). Один из самых маленьких объектов, средний радиус составляет всего 718 км, при этом, в отличие от остальных небесных тел, обладает неправильной, как бы сплюснутой, формой. При этом имеется и 2 спутника – Хииака и Намака.
Макемаке
Макемаке, вид в телескоп Хаббл
Размер третьей по величине до сих пор не известен точно. Предполагается, что средний радиус приблизительно равен 740 с точностью до 17 км. Зато продолжительность года на ней удалось установить довольно точно — 111867 суток (что примерно равно 306 годам). Спутников на её орбите не обнаружено.
Эрида
Снимок Эриды со спутником
Один из самых больших объектов пояса Койпера лишь ненамного превосходит Плутон – 1163 км. Оборот вокруг Солнца занимает 205 029 сут (чуть больше, чем 561 год).
Обнаружившие её ученые в 2005 году изначально были уверены, что открыли 10 планету солнечной системы, но впоследствии она была признана карликовой планетой.
Открытие этого небесного тела, можно сказать, положило начало новой эры для астрономии, поскольку именно факт её открытия положил начало многочисленным спорам о статусе Плутона.
Церера
Цветной снимок Цереры
Примечательна тем, что еще совсем недавно была в разряде астероидов и занимала среди них первое место по размеру. Продолжительность года, по сравнению с другим удаленными карликовыми планетами — смехотворна, всего 4,6 года.
В сравнении с другими, ее диаметр не столь впечатляет и составляет 975×909 км. Период вращения вокруг оси имеет продолжительность около 0,3781 суток. У Цереры спутники не обнаружены.
Доклад на тему планеты солнечной системы
Наша Солнечная система включает в себя планеты, их спутники, кометы, астероиды, пыль, газ, мелкие частицы, а так же, Солнце. Так как, Солнце обладает гравитацией, оно удерживает все объекты вокруг себя. Всего известно 8 планет Если посмотреть, на какой удаленности от Солнца они находятся, можно их выстроить в такой ряд – Меркурий – Венера – Земля – Марс – Юпитер – Сатурн – Уран – Нептун. Раньше ученые считали планетой Плутон, но по мере развития науки, планетам дали характеристики, которым Плутон не соответствует и в 2006 году его исключили из списка планет.
Все планеты делятся на две группы. К первой (земной) относятся – Венера, Меркурий, Марс и Земля. Их характеризуют небольшие размеры, твердая поверхность и отсутствие или малое количество спутников. Из этих планет, самой большой является наша Земля.
Ко второй группе относятся планеты – Нептун, Уран, Сатурн, Юпитер, объединенные одним названием – гиганты. Их строение отличается от других планет – у них отсутствует твердая поверхность, в химическом составе присутствует газ. Кроме этого, у всех гигантов есть спутники, среди которых, очень большие.
Планеты из земной группы:
- Меркурий – среди других планет, эта самая маленькая и находится ближе всех к Солнцу, оборот вокруг которого составляет 88 дн. Вес Меркурия гораздо меньше веса Земли – в 20 раз. Атмосфера на планете отсутствует, ночью свирепствует сильный холод, а днем очень жарко. Поверхность Меркурия испещрена кратерами, несколько из которых, достигают не один километр в ширину.
- Венеру закрывают густые облака ядовитого газа, которые простираются на 100 км вверх. Это вторая планета (после Меркурия) от Солнца. На Венере очень жарко (более 500 градусов). Спутники у нее отсутствуют. После Луны и Солнца, Венера является самой ярким космическим объектом в нашей Солнечной системе. Она настолько медленно вращается, что ее сутки составляют 243 дня, а год – 225, если сравнивать с Землей.
- Марс – расположен после Земли, по счету – это четвертая планета от Солнца. У Марса есть спутники, их всего два – Деймос и Фобос. Знаменита планета своим красным цветом, так как в ее почве большое количество окиси железа. Сутки длятся 24 часа, а вот год – 668 дней, что вдвое больше, чем у Земли. Это единственная планета, которая более всех похожа на Землю, здесь, так же, происходит смена времен года, присутствует тонкий слой атмосферы и, возможно, есть вода (но, это предположение).
Гиганты:
- Юпитер считается самым крупным космическим объектом, имеет кольца (всего их 5), состоящие из космической пыли. Отмечено, что планета имеет более 60-ти спутников. Юпитер тяжелее Земли, приблизительно в 300 раз и имеет 11 земных радиусов. Если говорить обо всех планетах, то следует сказать, что они, все вместе взятые, в 2,5 раза легче, чем гигант Юпитер. Не смотря на свои огромные размеры, оборот вокруг оси Юпитер совершает за 10 часов, а вокруг Солнца оборачивается за 12 лет (земных).
- Сатурн виден с Земли невооруженным глазом, а кольца (состоят из льда и пыли) можно разглядеть в телескоп. Количество спутников – более 60-ти, один из которых, даже, больше Меркурия. Сатурн сжат у полюсов и расширен у экватора, по этой причине его вращение происходит очень быстро. В сутках планеты всего 10 земных часов, а год длится – 30 лет.
- Уран характерен тем, что его ось отклонена на 98 гр., в отличие от других планет. Из-за этого, освещение Южного и Северного полюсов происходит попеременно, длительностью, 42 года. Есть предположение, что планета столкнулась с неизвестным космическим объектом, поэтому она так движется. В составе Урана смесь газов, переходящая в жидкость, которая зафиксирована на протяжении 8-ми тысяч километров. Наиболее низкая температура здесь была на уровне 224 гр. Спутников на Уране – 27, колец – 13.
- Нептун самая крайняя планета в Солнечной системе, находящаяся на самом большом расстоянии от Солнца. Интересно, что планета, была открыта путем математических вычислений и в телескоп она не была видна. Нептун, довольно массивная и плотная планета, солнечного света получает в 400 раз меньше, чем Земля. Здесь всегда страшный холод и царят сумерки. Один оборот вокруг Солнца длится 164 года, следует сказать, что с тех пор, когда планета была открыта (в 1846 г.), она облетела Солнце только один раз. Длительность суток – 16 часов.
Строение и характеристики Солнца
Строение Солнца
Интерактивная гелиоцентрическая модель Солнечной системы представляет собой модель, в центре которой находится Солнце. Рассмотрим основные характеристики Солнца.
Солнце – одна из миллиардов звезд нашей Галактики. Солнце относится к желтым карликам. Его радиус в 109 раз больше радиуса Земли, а масса – в 330 000 раз. Температура Солнца на поверхности равна 6000 К. Химический состав нашей звезды примерно такой же, как и других звезд: 71% — водород, 27% — гелий.
Против часовой стрелки происходит вращение планет.
Солнце условно разделяют на такие области с разным физическим состояниям вещества и распределением энергии: ядро, радиоактивная зона (зона лучистого переноса), конвективная зона и атмосфера. Ядро – центральная область Солнца, где происходят термоядерные реакции. Зона радиации – зона, где энергия переносится путем излучения отдельных квантов. В конвективной зоне энергия переносится путем перемешивания горячих масс с холодными. Атмосфера состоит из трех оболочек: фотосферы, хромосферы и короны. От фотосферы мы получаем основной поток излучения.
Рабочая схема ADS-B
Система ADS-B постепенно заменяет радар как более эффективный метод управления воздушным движением. Несомненно, это, весьма удобно.
Как работает ADS-B
В конечном счете ADS-B позволит самолетам летать гораздо ближе друг к другу и прокладывать более эффективные маршруты, которые однозначно уменьшат расход топлива и будут способствовать снижению времени полета.
В таких местах, как Европа и Австралия внедрение ADS-B идет полным ходом, и большинство самолетов ее используют. Северная Америка немного отстает в настоящее время, но несомненно догонит в будущем. Оснащение этой технологией показывает медленный, но неуклонный рост.
Недостатки радиолокации
В это плане, в России все не так радужно. Самолеты со знаком России встречаются не так уж и часто. Карта наглядно показывает количество авиаперевозок у нас и в развитых странах. Гражданская авиация со времен Советского Союза постепенно приходит в упадок, дороговизна внутренних перелетов, по сравнению с развитыми странами огромна. Популярностью пользуются рейсы в страны Европы и Азии и курортные направления.
В настоящее время более актуальными проблемами авиакомпаний является обновление парка, стимулирования поездок и тому подобное, а об оснащении всех самолетов, как и пассажирских так и коммерческих, системой ADS-B не может быть речи. Надеемся в будущем это исправится что позволит увидеть больше судов под нашими флагами.
FLASH Модель Солнечной системы
Данная модель Солнечной системы создана разработчиками в целях получения пользователями знаний об устройстве Солнечной системы и её месте во Вселенной. С её помощью можно получить наглядное представление о том, как расположены планеты относительно Солнца и друг друга, а так же о механике их движения. Изучить все аспекты этого процесса позволяет технология Flash, на основании которой создана анимированая модель Солнечной системы, что даёт широкие возможности пользователю приложения по исследованию планетарного движения как в абсолютной системе координат, так и в относительной.
Управление флеш-моделью простое: в левой верхней половине экрана находится рычажок регулировки скорости вращения планет, с помощью которого можно выставить даже отрицательную её величину. Немного ниже располагается ссылка на помощь – HELP
В модели хорошо реализована подсветка важных моментов устройства Солнечной системы, на которых пользователю стоит обратить внимание в процессе работы с нею, например, планеты выделены здесь различными цветами. Кроме того, если вам предстоит длительный исследовательский процесс, то вы можете включить музыкальное сопровождение, которое прекрасно дополнит впечатление от величия Вселенной
В левой нижней части экрана расположены пункты меню с фазами Луны, что позволяет наглядно представить их взаимосвязь с иными процессами, происходящими в Солнечной системе.
В правой верхней части можно ввести необходимую вам дату с тем, что бы получить информацию о расположении планет на этот день. Эта функция очень понравится всем любителям астрологии и огородникам, которые придерживаются сроков посева огородных культур в зависимости от фаз луны и положения иных планет Солнечной системы. Немного ниже этой части меню располагается переключатель между созвездиями и месяцами, которые идут по краю круга.
Нижняя правая часть экрана занята переключателем между астрономическими системами Коперника и Тихо Браге. В гелиоцентрической модели мира, созданной Коперником, её центром изображено Солнце с вращающимися вокруг неё планетами. Система же датского астролога и астронома Тихо Браге, который жил в 16 веке, является менее известной, но она более удобна для осуществления астрологических вычислений.
В центре экрана расположен вращающийся круг, по периметру которого размещён ещё один элемент управления моделью, исполнен он в виде треугольника. Если пользователь потянет этот треугольник, то у него появится возможность выставить необходимое для изучения модели время. Хотя работая с этой моделью вы и не получите максимально точных размеров и расстояний в Солнечной системе, но зато она очень удобна управляется и максимально наглядна.
Солнце — основной источник энергии на Земле.
Основные характеристики | |
Среднее расстояние от Земли | 1,496×1011 м(8,31 световых минут) |
Видимая звёздная величина (V) | -26,74м |
Абсолютная звёздная величина | 4,83м |
Спектральный класс | G2V |
Параметры орбиты | |
Расстояние от центра Галактики | ~2,5×1020 м (26 000 световых лет) |
Расстояние от плоскости Галактики | ~4,6×1017 м(48 световых лет) |
Галактический период обращения | 2,25-2,50×108 лет |
Скорость | 2,17×105 м/с(на орбите вокруг центра Галактики)2×104 м/с(относительно соседних звёзд) |
Физические характеристики | |
Средний диаметр | 1,392×109 м(109 диаметров Земли) |
Экваториальный радиус | 6,955×108 м |
Длина окружности экватора | 4,379×109 м |
Сплюснутость | 9×10-6 |
Площадь поверхности | 6,088×1018 м2(11 900 площадей Земли) |
Объём | 1,4122×1027 м2(1 300 000 объёмов Земли) |
Масса | 1,9891×1030 кг(332 946 масс Земли) |
Средняя плотность | 1409 кг/м3 |
Ускорение на экваторе | 274,0 м/с2(27,94 g) |
Вторая космическая скорость | (для поверхности) 617,7 км/с(55 земных) |
Эффективная температура поверхности | 5515 C° |
Температура короны | ~1 500 000 C° |
Температура ядра | ~13 500 000 C° |
Светимость | 3,846×1026 Вт ~3.75×1028 Лм |
Яркость | 2,009×107 Вт/м2/ср |
Характеристики вращения | |
Наклон оси | 7,25°(относительно плоскости эклиптики)67,23°(относительно плоскости Галактики) |
Прямое восхождение северного полюса | 286,13°(19 ч 4 мин 30 с) |
Склонение северного полюса | +63,87° |
Скорость вращения внешних видимых слоёв | (на экваторе) 7284 км/ч |
Состав фотосферы | |
Водород | 73,46 % |
Гелий | 24,85 % |
Кислород | 0,77 % |
Углерод | 0,29 % |
Железо | 0,16 % |
Сера | 0,12 % |
Неон | 0,12 % |
Азот | 0,09 % |
Кремний | 0,07 % |
Магний | 0,05 % |
==================================================================
График солнечной активности за последние 400 лет
F10.7, сеп (10-22Вт/м2/Гц)
Спектральную интенсивность потока энергии d∕dν
(dP∕dS) радиоизлучения Солнца на частоте
2.8 ГГц (длина волны – 10.7 см) c 1947 г. регулярно измеряют и используют в качестве
инегрального показателя активности Солнца.
Результаты измерений выражают в solar flux units – sfu – солнечных единицах
потока – сеп (с. е. п.): 1 сеп = 10-22 Вт·м-2·с (или
Вт·м-2·Гц-1). Для краткости эту физическую величину часто
называют 10.7 cm flux и обозначают F10.7. По-русски F10.7 называют
‘поток (радиоизлучения Солнца) на волне (длиной) 10,7 см’.
До 1947 г. активность Солнца оценивали по числу солнечных пятен, в качестве показателя
используя относительное число солнечных пятен – sunspot number (число Вольфа (W)
– Wolf number), рассчитываемое из числа пятен и числа групп пятен (а в XVII веке
– просто число пятен).
Спутники Юпитера
Галилеевы спутники
Как выглядели бы спутники Юпитера в небе Земли
Всего у Юпитера насчитывается 63 спутника, из них выделяют группу галилеевых – Европа, Ио, Ганимед и Каллисто. Они были названы галилеевыми, так как их открыл Галилео Галилей в 1610 году с помощью первой своей подзорной трубы.
Самым близким к Юпитеру является спутник Ио (Io), который по размерам похож на Луну. Он имеет самую большую геологическую активность среди всех тел системы – на нем зарегистрировано более 400 действующих вулканов, из жерл которых постоянно извергается магма и газы. Поэтому Ио имеет красивую ярко-желтую окраску, которую предают ему сера и расплавленные силикатные породы. Частые извержения вулканов возникают под действием гравитационного поля Юпитера и других спутников.
Наша модель показывает и другой галилеевый спутник Европу (Europa) – второй от Юпитера спутник. Радиус Европы немного меньше радиуса Луны, а масса самая большая среди всех спутников. Это объясняется высокой плотностью, так как она состоит в основном из силикатных пород. Поверхность Европы полностью покрыта слоем льда. Возможно, под этим слоем существует океан из жидкой воды, на дне которого есть все условия для жизни.
Каллисто (Callisto) – второй по размеру галилеевый спутник. По порядку размещения от Юпитера он самый дальний среди галилеевых спутников. Диаметр Каллисто почти равен диаметру планеты Меркурий, а масса – 1/3 массы Меркурия. Его поверхность покрыта кратерами и многокольцевыми структурами. По количеству кратеров Каллисто опережает Луну и Меркурий.
Другие спутники Юпитера
Фива или Тебе (Thebe) – четвертый от Юпитера спутник, который был открыт С. Синнотом в 1979 году. Он имеет неправильную форму и практически круговую орбиту. Диаметр Фивы 100-110 км, она всегда обращена к Юпитеру одной стороной. На поверхности Фивы имеются большие кратеры.
В 2000 г было открыто еще 11 новых спутников Юпитера, среди которых Халдене (Chaldene). Современная наука на этом не останавливается. Халдене относится к группе спутников Карме, его размер всего 3,8 тыс. м.
Группа Гималии
Также стоит упомянуть спутники Юпитера, которые относятся к группе Гималии. Эта группа включает четыре спутника: Гималия (самый крупный спутник группы), Лиситея, Леда, Элара.
Лиситея (Lysithea) —одиннадцатый спутник по удаленности от планеты Юпитер. Лиситея была открыта Никольсоном в 1938 году. Ее радиус около 18 км. Названа на честь Лизитеи — дочери Океана.
Леда (Leda) – самый маленький спутник Юпитера, ее радиус всего 8 км. Она была открыта в 1974 г Ч. Коуэлом. Леда названа на честь супруги спартанского царя Тиндарея.
Строение Cолнечной системы
Солнечная система
Вокруг Солнца в непрерывном движении находятся 8 планет (раньше их было 9, но сейчас ученые относят Плутон к карликовым планетам) по эллиптичным орбитам. Планеты размещаются в таком порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Все они делятся на две группы: планеты земной группы (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран и Нептун). Планеты земной группы имеют твердую поверхность, мало спутников (всего 3) и они сравнительно небольшие. Планеты-гиганты не имеют четкой поверхности, отличаются большими размерами и большим количеством спутников (сейчас открыто примерно 160).
Между Марсом и Юпитером находится пояс астероидов, который состоит из более, чем 500 000 астероидов. Самые большие из них имеют названия: Церера (диаметр 960 км), Паллада (диаметр 608 км), Веста (диаметр 555 км) и др. За орбитой Нептуна находится пояс карликовых планет – пояс Койпера, в состав которого входит и Плутон. Модель показывает размещение пояса астероидов и пояса Койпера.
Также в Солнечной системе существуют еще один вид небесных тел — кометы, которые находятся под пристальным вниманием благодаря тому, что имеют хвост. Обычно кометы не включают в модель
Плоская, светящаяся комета состоит из ядра, комы и хвоста. Ядро, с которого образуется хвост, преимущественно состоит изо льда. Хвост у кометы образовывается с ее приближением к Солнцу благодаря действию Солнечного ветра. Направлен он в сторону, противоположную от Солнца. Самая известная комета – комета Галлея, которую наблюдают уже несколько тысячелетий с периодом 76 лет.