Python array

Содержание:

How to modify elements?

Arrays in Python are mutable. They can be modified by the following syntax:

Object_name=value; 

Example:

import array as myarr 
a=myarr.array('b',) 
a=99 
print(a) 
 

Output:

array('b', ) 

We can also perform concatenation operations on arrays in Python.

Example:

import array as myarr 
first = myarr.array('b', ) 
second = myarr.array('b', ) 
numbers = myarr.array('b')   
numbers = first + second 
print(numbers)

Output:

array('b', )   

The above Python array example code concates two variables called «first» and «second». The result is stored in a variable called «number».

The last line of code is used to print two arrays.

Способы печатать Numpy Array в Python

Как упоминалось ранее, мы также можем реализовать массивы в Python, используя Numpy модуль. Модуль поставляется с заранее определенным классом массива, который может удерживать значения одного типа.

Эти Numpy массивы также может быть многомерным. Итак, давайте посмотрим, как мы можем распечатать оба 1d а также 2D Обмойте массивы в Python.

Использование метода Print ()

Подобно корпусу массивов, реализованных с использованием списков, мы можем напрямую пропустить numpy Marray имя для Метод для печати массивов.

import numpy as np

arr_2d = np.array(,,])
arr = np.array()

print("Numpy array is: ", arr) #printing the 1d numpy array

print("Numpy 2D-array is: ", arr_2d) #printing the 2d numpy array

Выход :

Numpy array is:  
Numpy 2D-array is:  
 
 ]

Здесь и один 1d и один 2D Numpy массивы соответственно. Мы передаем их имена в метод и распечатать их обоих. Примечание: На этот раз также массивы напечатаны в виде примечательных массивов с кронштейнами.

Использование для циклов

Опять же, мы также можем пройти через Numpy массивы в Python, используя петля структуры. Итак, мы можем получить доступ к каждому элементу массива и печатать одинаково. Это еще один способ печатать массив в Python.

Посмотрите на пример ниже.

import numpy as np

arr = np.array()
arr_2d = np.array(,,,])

#printing the numpy array
print("The Numpy Array is : ")
for i in arr:
    print(i, end = ' ')

#printing the numpy 2D-Array
print("\nThe Numpy 2D-Array is:")
for i in arr_2d:
    for j in i:
        print(j, end=" ")
    print()

Выход :

The Numpy Array is : 
11 22 33 44 
The Numpy 2D-Array is:
90 20 
76 45 
44 87 
73 81

Вот и мы печатаем Numpy Array элементы на нашем желаемом способе (без скобок) путем доступа к элементам 1d и 2D массив индивидуально.

Traverse an Array

You can traverse a Python array by using loops, like this one:

import array
balance = array.array('i', )
for x in balance:
	print(x)

Output:

300
200
100

Summary:

  • An array is a common type of data structure wherein all elements must be of the same data type.
  • Python programming, an array, can be handled by the «array» module.
  • Python arrays are used when you need to use many variables which are of the same type.
  • In Python, array elements are accessed via indices.
  • Array elements can be inserted using an array.insert(i,x) syntax.
  • In Python, arrays are mutable.
  • In Python, a developer can use pop() method to pop and element from Python array.
  • Python array can be converted to Unicode. To fulfill this need, the array must be a type ‘u’; otherwise, you will get «ValueError».
  • Python arrays are different from lists.
  • You can access any array item by using its index.
  • The array module of Python has separate functions for performing array operations.

Implementing MergeSort and QuickSort

Here, we investigate two other commonly used Sorting techniques used in actual practice, namely the MergeSort and the QuickSort algorithms.

1. MergeSort Algorithm

The algorithm uses a bottom-up Divide and Conquer approach, first dividing the original array into subarrays and then merging the individually sorted subarrays to yield the final sorted array.

In the below code snippet, the method does the actual splitting into subarrays and the perform_merge() method merges two previously sorted arrays into a new sorted array.

import array

def mergesort(a, arr_type):
    def perform_merge(a, arr_type, start, mid, end):
        # Merges two previously sorted arrays
        # a and a
        tmp = array.array(arr_type, )
        def compare(tmp, i, j):
            if tmp <= tmp:
                i += 1
                return tmp
            else:
                j += 1
                return tmp
        i = start
        j = mid + 1
        curr = start
        while i<=mid or j<=end:
            if i<=mid and j<=end:
                if tmp <= tmp:
                    a = tmp
                    i += 1
                else:
                    a = tmp
                    j += 1
            elif i==mid+1 and j<=end:
                a = tmp
                j += 1
            elif j == end+1 and i<=mid:
                a = tmp
                i += 1
            elif i > mid and j > end:
                break
            curr += 1


    def mergesort_helper(a, arr_type, start, end):
        # Divides the array into two parts
        # recursively and merges the subarrays
        # in a bottom up fashion, sorting them
        # via Divide and Conquer
        if start < end:
            mergesort_helper(a, arr_type, start, (end + start)//2)
            mergesort_helper(a, arr_type, (end + start)//2 + 1, end)
            perform_merge(a, arr_type, start, (start + end)//2, end)


    # Sorts the array using mergesort_helper
    mergesort_helper(a, arr_type, 0, len(a)-1)

Test Case:

a = array.array('i', )
print('Before MergeSort ->', a)
mergesort(a, 'i')
print('After MergeSort ->', a)

Output:

Before MergeSort -> array('i', )
After MergeSort -> array('i', )

2. QuickSort Algorithm

This algorithm also uses a Divide and Conquer strategy, but uses a top-down approach instead, first partitioning the array around a pivot element (here, we always choose the last element of the array to be the pivot).

Thus ensuring that after every step, the pivot is at its designated position in the final sorted array.

After ensuring that the array is partitioned around the pivot (Elements lesser than the pivot are to the left, and the elements which are greater than the pivot are to the right), we continue applying the function to the rest of the array, until all the elements are at their respective position, which is when the array is completely sorted.

Note: There are other approaches to this algorithm for choosing the pivot element. Some variants choose the median element as the pivot, while others make use of a random selection strategy for the pivot.

def quicksort(a, arr_type):
    def do_partition(a, arr_type, start, end):
        # Performs the partitioning of the subarray a
        
        # We choose the last element as the pivot
        pivot_idx = end
        pivot = a

        # Keep an index for the first partition
        # subarray (elements lesser than the pivot element)
        idx = start - 1

        def increment_and_swap(j):
            nonlocal idx
            idx += 1
            a, a = a, a

         < pivot]
        
        # Finally, we need to swap the pivot (a with a)
        # since we have reached the position of the pivot in the actual
        # sorted array
        a, a = a, a

        # Return the final updated position of the pivot
        # after partitioning
        return idx+1

    def quicksort_helper(a, arr_type, start, end):
        if start < end:
            # Do the partitioning first and then go via
            # a top down divide and conquer, as opposed
            # to the bottom up mergesort
            pivot_idx = do_partition(a, arr_type, start, end)
            quicksort_helper(a, arr_type, start, pivot_idx-1)
            quicksort_helper(a, arr_type, pivot_idx+1, end)

    quicksort_helper(a, arr_type, 0, len(a)-1)

Here, the method does the step of the Divide and Conquer approach, while the method partitions the array around the pivot and returns the position of the pivot, around which we continue to recursively partition the subarray before and after the pivot until the entire array is sorted.

Test Case:

b = array.array('i', )
print('Before QuickSort ->', b)
quicksort(b, 'i')
print('After QuickSort ->', b)

Output:

Before QuickSort -> array('i', )
After QuickSort -> array('i', )

Индексирование массивов

Когда ваши данные представлены с помощью массива NumPy, вы можете получить к ним доступ с помощью индексации.

Давайте рассмотрим несколько примеров доступа к данным с помощью индексации.

Одномерное индексирование

Как правило, индексирование работает так же, как вы ожидаете от своего опыта работы с другими языками программирования, такими как Java, C # и C ++.

Например, вы можете получить доступ к элементам с помощью оператора скобок [], указав индекс смещения нуля для значения, которое нужно получить.

При выполнении примера печатаются первое и последнее значения в массиве.

Задание целых чисел, слишком больших для границы массива, приведет к ошибке.

При выполнении примера выводится следующая ошибка:

Одно из ключевых отличий состоит в том, что вы можете использовать отрицательные индексы для извлечения значений, смещенных от конца массива.

Например, индекс -1 относится к последнему элементу в массиве. Индекс -2 возвращает второй последний элемент вплоть до -5 для первого элемента в текущем примере.

При выполнении примера печатаются последний и первый элементы в массиве.

Двумерное индексирование

Индексация двумерных данных аналогична индексации одномерных данных, за исключением того, что для разделения индекса для каждого измерения используется запятая.

Это отличается от языков на основе C, где для каждого измерения используется отдельный оператор скобок.

Например, мы можем получить доступ к первой строке и первому столбцу следующим образом:

При выполнении примера печатается первый элемент в наборе данных.

Если нас интересуют все элементы в первой строке, мы можем оставить индекс второго измерения пустым, например:

Это печатает первый ряд данных.

Перестройка массива

После нарезки данных вам может понадобиться изменить их.

Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.

Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.

Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера

Форма данных

Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.

Например:

При выполнении примера печатается кортеж для одного измерения.

Кортеж с двумя длинами возвращается для двумерного массива.

Выполнение примера возвращает кортеж с количеством строк и столбцов.

Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.

К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:

Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.

Изменить форму 1D в 2D Array

Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.

NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.

Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.

Изменить форму 2D в 3D Array

Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.

Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.

Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.

Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.

Ways to Print an Array in Python

Now, let us look at some of the ways to print both 1D as well as 2D arrays in Python. Note: these arrays are going to be implemented using lists.

Directly printing using the print() method

We can directly pass the name of the array(list) containing the values to be printed to the method in Python to print the same.

But in this case, the array is printed in the form of a list i.e. with brackets and values separated by commas.

arr = 
arr_2d = ,]

print("The Array is: ", arr) #printing the array
print("The 2D-Array is: ", arr_2d) #printing the 2D-Array

Output:

The Array is:  
The 2D-Array is:  , ]

Here, is a one-dimensional array. Whereas, is a two-dimensional one. We directly pass their respective names to the method to print them in the form of a list and list of lists respectively.

Using for loops in Python

We can also print an array in Python by traversing through all the respective elements using loops.

Let us see how.

arr = 
arr_2d = ,]

#printing the array
print("The Array is : ")
for i in arr:
    print(i, end = ' ')

#printing the 2D-Array
print("\nThe 2D-Array is:")
for i in arr_2d:
    for j in i:
        print(j, end=" ")
    print()

Output:

The Array is : 
2 4 5 7 9 
The 2D-Array is:
1 2 
3 4

In the code above we traverse through the elements of a 1D as well as a 2D Array using for loops and print the corresponding elements in our desired form.

How to concatenate arrays in python

We can use numpy.concatenate() to concatenate multiple numpy arrays.

Example:

Oops, after executing the above code i got the below error

ModuleNotFoundError: No module named ‘numpy’

See the below output

So to fix the above error you need to install ‘numpy’ with pip install numpy command.

To run the above command you need to open the command prompt(Run as administrator mode) and go to the path where python is installed and then run the above command.

See below

Now after installing numpy, you can able to run the above code which will concatenate both the arrays.

You may like Python program to print element in an array.

Дайте мне список, и я переверну мир

Так (или примерно так) говорил ещё Архимед, а кто мы такие, чтоб с ним спорить. Список — простой, понятный и надёжный инструмент: в любой непонятной ситуации попробуйте сначала применить список, и даже если он не подойдёт, то подскажет, как и чем решать задачу дальше. Обязательно посмотрите другие методы списков из официальной документации Python, чтобы они не оказались для вас сюрпризом на собеседовании.

Конечно, Python — это не только списки, и изучать его лучше на родном языке в компании единомышленников. Приходите на наш курс «Профессия Python-разработчик». Под руководством опытных наставников вы станете настоящим укротителем питонов повелителем списков, массивов и словарей, а заодно получите востребованную и высокооплачиваемую специальность.

Доступ к элементам матрицы, строкам и столбца

Доступ к элементам матрицы

Также можно получить доступ к элементам матрицы, используя индекс. Начнем с одномерного массива NumPy.

import numpy as np
A = np.array()

print("A =", A)     # Первый элемент     
print("A =", A)     # Третий элемент     
print("A =", A)   # Последний элемент     

Когда вы запустите эту программу, результат будет следующий:

A  = 2
A  = 6
A  = 10

Теперь выясним, как получить доступ к элементам двухмерного массива (который в основном представляет собой матрицу).

import numpy as np

A = np.array(,
    ,
    ])

#  Первый элемент первой строки
print("A =", A)  

# Третий элемент второй строки
print("A =", A)

# Последний элемент последней строки
print("A =", A)     

Когда мы запустим эту программу, результат будет следующий:

A   = 1
A   = 9
A   = 19

Доступ к строкам матрицы

import numpy as np

A = np.array(, 
    ,
    ])

print("A =", A) # Первая строка
print("A =", A) # Третья строка
print("A =", A) # Последняя строка (третья строка в данном случае)

Когда мы запустим эту программу, результат будет следующий:

A  = 
A  = 
A  = 

Доступ к столбцам матрицы

import numpy as np

A = np.array(, 
    ,
    ])

print("A =",A) # Первый столбец
print("A =", A) # Четвертый столбец
print("A =", A) # Последний столбец (четвертый столбец в данном случае)

Когда мы запустим эту программу, результат будет следующий:

A  = 
A  = 
A  = 

Если вы не знаете, как работает приведенный выше код, прочтите раздел «Разделение матрицы».

Обратитесь в массив списка в Python

Как мы уже обсуждали Списки и Массивы похожи в Python. Там, где основное различие между ними, в том, что массивы позволяют только элементы одного и того же типа данных, в то время как списки позволяют им быть разными.

Поскольку Python не поддерживает обычные массивы, мы можем использовать списки, чтобы изобразить то же самое и попытаться отменить их. Давайте посмотрим на разные методы, следующие, которые мы можем достичь этой задачи,

1. Использование списка нарезка, чтобы изменить массив в Python

Мы можем изменить массив списка, используя нарезка методы. Таким образом, мы фактически создаем новый список в обратном порядке как у оригинального. Давайте посмотрим, как:

#The original array
arr = 
print("Array is :",arr)

res = arr #reversing using list slicing
print("Resultant new reversed array:",res)

Выход :

Array is : 
Resultant new reversed array: 

2. Использование метода обратного ()

Python также предоставляет встроенный метод Это непосредственно меняет порядок элементов списка прямо на исходном месте.

Примечание : Таким образом, мы меняем порядок фактического списка. Следовательно, исходный порядок потерян.

#The original array
arr = 
print("Before reversal Array is :",arr)

arr.reverse() #reversing using reverse()
print("After reversing Array:",arr)

Выход :

Before reversal Array is : 
After reversing Array: 

3. Использование обратного () метода

У нас еще один метод, Что при прохождении со списком возвращает намерение имеющих только элементы списка в обратном порядке. Если мы используем Метод на этом намечном объекте мы получаем новый список, который содержит наш обратный массив.

#The original array
arr = 
print("Original Array is :",arr)
#reversing using reversed()
result=list(reversed(arr))
print("Resultant new reversed Array:",result)

Выход :

Original Array is : 
Resultant new reversed Array: 

Функции, доступные в Python Bitarray:

Сл Нет Функция Описание Тип возврата
1 все() True, когда все биты в массиве истинны тип bool
2 какой-нибудь() True, когда любой бит в массиве истинен тип bool
3 добавить(пункт, /) Добавьте значение истинности bool(item) в конец битового массива
4 bytereverse() Реверсирует порядок битов на месте
5 понятно() Опустошает битовый массив
6 копировать() Копирует битовый массив битаррей
7 Подсчитывает частоту значения bool инт
8 extend(iterable или string, /) Расширяет битовый массив
9 заполнять() Добавляет 0s в конец bitarray, чтобы сделать его кратным 8 инт
10 индекс(значение,, stop=, /) Находит индекс первого вхождения заданного значения bool инт
11 вставить(индекс, значение, /) Вставляет значение bool в заданный индекс
12 инвертировать(индекс=) Инвертирует все биты на месте
13 intersearch(bitarray, /) Поиск заданного битового массива итератор
14 длина() Дает длину битового массива инт
15 pop(индекс=-1, /) Удаляет и возвращает i-й элемент пункт
16 удалить(значение, /) Удалите первое вхождение заданного значения bool
17 обратный() Изменяет порядок битов на месте
18 Сортирует биты по местам

Функции, доступные для объекта bitarray

Python change shape of a 1D array to a 3D array

Now, we can see how to change the shape of a 1D array to a 3D array in python.

  • In this example, I have imported a module called numpy as np and assigned, the variable array as array = np.array(). The np.array is used to get the dimension of an array.
  • To change the shape of an array I have created another variable as array_3d and assigned array_3d = array.reshape(2, 3, 2).
  • The reshape() function is used to get the new shape for an array without changing the data. To get the output I have used print(array_3d).

Example:

The input array was of 1d array and in the output you can see 3d array. You can refer to the below screenshot for the output.


Python convert 1D array to 3D array

Python maximum value on 2d array

First, we will import numpy, and then we will create a 2d array. To find the maximum value from the two-dimensional array we will use the “numpy.max(my_arr)” function.

Example:

After writing the above code (python maximum value on 2d array), Ones you will print “max_element” then the output will appear as “Maximum element on 2d array is: 80”. Here, the numpy.max(my_arr) will return the maximum value from the 2d array.

You can refer to the below screenshot for python maximum value on 2d array

Python maximum value on 2d array

You may like the following Python tutorials:

  • Hash table in python
  • Block Indentation in Python
  • Python get filename from the path
  • Python TypeError: ‘list’ object is not callable
  • Python if else with examples
  • Python For Loop with Examples
  • Python read excel file and Write to Excel in Python
  • Create a tuple in Python
  • Python pass by reference or value with examples
  • Python select from a list + Examples

In this Python tutorial, we learned about python arrays and also how to use it like:

  • What is an Array in Python
  • Access elements from Arrays python
  • How to update am element in Python Array
  • How to get Length of an Array in python
  • How to Add Array elements in python
  • Delete Array elements in python
  • Loop in Array elements in python
  • What is an array module in python
  • Create a python Array
  • Accessing Array elements in python
  • Append item in array python
  • How to Insert element in array python
  • Extend array in python
  • Remove element from an array in python
  • How to remove the last element from a Python array
  • Reverse an array python
  • Python count the occurrence of an element in an array
  • Convert array to list in python
  • Find the index of an element in an array python
  • How to update the element in an array in Python
  • Python lists vs arrays
  • Python list to numpy arrays
  • Python mean of an array
  • Python mean of two arrays
  • Minimum value of array python
  • Maximum value of array python
  • Python minimum value on 2d array
  • Python maximum value on 2d array

Python concatenate arrays of different dimensions

Now, we can see how to concatenate arrays of different dimensions in python.

  • In this example, I have imported a module called numpy as np.
  • I have taken two arrays such as array1 and array2. The np.arange is used to create the array of the given range.
  • Here, np.arange(8) is the given range, and another array with range np.arange(2) is given.
  • To concatenate the array of two different dimensions. The np.column_stack((array1, array2)) is used.
  • To get the output, I have used print(array1).

Example:

Here, the two different dimensions array are concatenated as the output. The below screenshot shows the output.


Python concatenate arrays of different dimensions

2-dimensional array Python concatenate

Here, we can see how to concatenate 2-dimensional array in python.

  • In this example, I have imported a module called numpy as np.
  • To create the 2-d array, I have used np.arange(2,11).reshape(3,3).
  • To print the created array, I have used print(array1), print(array2).
  • The np.concatenate ((array1,array2),axis=1) is used to concatenate the array.
  • The axis=0 represents rows and axis=1 represents columns.

Example:

The 2-d array is concatenated as the output. You can refer to the below screenshot for the output.


2-dimensional array python concatenate

This is how to concatenate 2-dimensional array in Python.

Синтаксис

Эта функция принимает массив типа numpy (например, массив целых и логических значений NumPy).

Он возвращает новый массив numpy после фильтрации на основе условия, который представляет собой массив логических значений, подобный numpy.

Например, условие может принимать значение массива (]), который является логическим массивом типа numpy. (По умолчанию NumPy поддерживает только числовые значения, но мы также можем преобразовать их в bool).

Например, если условием является массив (]), а наш массив – a = ndarray (]), при применении условия к массиву (a ), мы получим массив ndarray (`1 2`).

import numpy as np

a = np.arange(10)
print(a) # Will only capture elements <= 2 and ignore others

Вывод:

array()

ПРИМЕЧАНИЕ. То же условие условия также может быть представлено как <= 2. Это рекомендуемый формат для массива условий, так как записывать его как логический массив очень утомительно.

Но что, если мы хотим сохранить размерность результата и не потерять элементы из нашего исходного массива? Для этого мы можем использовать numpy.where().

numpy.where(condition )

У нас есть еще два параметра x и y. Что это? По сути, это означает, что если условие выполняется для некоторого элемента в нашем массиве, новый массив будет выбирать элементы из x.

В противном случае, если это false, будут взяты элементы из y.

При этом наш окончательный выходной массив будет массивом с элементами из x, если условие = True, и элементами из y, если условие = False.

Обратите внимание, что хотя x и y необязательны, если вы указываете x, вы также ДОЛЖНЫ указать y. Это потому, что в этом случае форма выходного массива должна быть такой же, как и входной массив

ПРИМЕЧАНИЕ. Та же логика применима как для одномерных, так и для многомерных массивов. В обоих случаях мы выполняем фильтрацию по условию. Также помните, что формы x, y и условия передаются вместе.

Теперь давайте рассмотрим несколько примеров, чтобы правильно понять эту функцию.

Добро пожаловать в NumPy!

NumPy (NumericalPython) — это библиотека Python с открытым исходным кодом, которая используется практически во всех областях науки и техники. Это универсальный стандарт для работы с числовыми данными в Python, и он лежит в основе научных экосистем Python и PyData. В число пользователей NumPy входят все — от начинающих программистов до опытных исследователей, занимающихся самыми современными научными и промышленными исследованиями и разработками. API-интерфейс NumPy широко используется в пакетах Pandas, SciPy, Matplotlib, scikit-learn, scikit-image и в большинстве других научных и научных пакетов Python.

Библиотека NumPy содержит многомерный массив и матричные структуры данных (дополнительную информацию об этом вы найдете в следующих разделах). Он предоставляет ndarray, однородный объект n-мерного массива, с методами для эффективной работы с ним. NumPy может использоваться для выполнения самых разнообразных математических операций над массивами. Он добавляет мощные структуры данных в Python, которые гарантируют эффективные вычисления с массивами и матрицами, и предоставляет огромную библиотеку математических функций высокого уровня, которые работают с этими массивами и матрицами.

Узнайте больше о NumPy здесь!

GIF черезgiphy

Установка NumPy

Чтобы установить NumPy, я настоятельно рекомендую использовать научный дистрибутив Python. Если вам нужны полные инструкции по установке NumPy в вашей операционной системе, вы можетенайти все детали здесь,

Если у вас уже есть Python, вы можете установить NumPy с помощью

conda install numpy

или

pip install numpy

Если у вас еще нет Python, вы можете рассмотреть возможность использованияанаконда, Это самый простой способ начать. Преимущество этого дистрибутива в том, что вам не нужно слишком беспокоиться об отдельной установке NumPy или каких-либо основных пакетов, которые вы будете использовать для анализа данных, таких как pandas, Scikit-Learn и т. Д.

Если вам нужна более подробная информация об установке, вы можете найти всю информацию об установке наscipy.org,

фотоАдриеннотPexels

Если у вас возникли проблемы с установкой Anaconda, вы можете ознакомиться с этой статьей:

Как импортировать NumPy

Каждый раз, когда вы хотите использовать пакет или библиотеку в своем коде, вам сначала нужно сделать его доступным.

Чтобы начать использовать NumPy и все функции, доступные в NumPy, вам необходимо импортировать его. Это можно легко сделать с помощью этого оператора импорта:

import numpy as np

(Мы сокращаем «numpy» до «np», чтобы сэкономить время и сохранить стандартизированный код, чтобы любой, кто работает с вашим кодом, мог легко его понять и запустить.)

В чем разница между списком Python и массивом NumPy?

NumPy предоставляет вам огромный выбор быстрых и эффективных числовых опций. Хотя список Python может содержать разные типы данных в одном списке, все элементы в массиве NumPy должны быть однородными. Математические операции, которые должны выполняться над массивами, были бы невозможны, если бы они не были однородными.

Зачем использовать NumPy?

фотоPixabayотPexels

Массивы NumPy быстрее и компактнее, чем списки Python. Массив потребляет меньше памяти и намного удобнее в использовании. NumPy использует гораздо меньше памяти для хранения данных и предоставляет механизм задания типов данных, который позволяет оптимизировать код еще дальше.

Что такое массив?

Массив является центральной структурой данных библиотеки NumPy. Это таблица значений, которая содержит информацию о необработанных данных, о том, как найти элемент и как интерпретировать элемент. Он имеет сетку элементов, которые можно проиндексировать в Все элементы имеют одинаковый тип, называемыймассив dtype(тип данных).

Массив может быть проиндексирован набором неотрицательных целых чисел, логическими значениями, другим массивом или целыми числами.рангмассива это количество измерений.формамассива — это кортеж целых чисел, дающий размер массива по каждому измерению.

Одним из способов инициализации массивов NumPy является использование вложенных списков Python.

a = np.array(, , ])

Мы можем получить доступ к элементам в массиве, используя квадратные скобки. Когда вы получаете доступ к элементам, помните, чтоиндексирование в NumPy начинается с 0, Это означает, что если вы хотите получить доступ к первому элементу в вашем массиве, вы получите доступ к элементу «0».

print(a)

Выход:

Ways to print NumPy Array in Python

As mentioned earlier, we can also implement arrays in Python using the NumPy module. The module comes with a pre-defined array class that can hold values of same type.

These NumPy arrays can also be multi-dimensional. So, let us see how can we print both 1D as well as 2D NumPy arrays in Python.

Using print() method

Similar to the case of arrays implemented using lists, we can directly pass NumPy array name to the method to print the arrays.

import numpy as np

arr_2d = np.array(,,])
arr = np.array()

print("Numpy array is: ", arr) #printing the 1d numpy array

print("Numpy 2D-array is: ", arr_2d) #printing the 2d numpy array

Output:

Numpy array is:  
Numpy 2D-array is:  
 
 ]

Here, and are one 1D and one 2D NumPy arrays respectively. We pass their names to the method and print both of them. Note: this time also the arrays are printed in the form of NumPy arrays with brackets.

Using for loops

Again, we can also traverse through NumPy arrays in Python using loop structures. Doing so we can access each element of the array and print the same. This is another way to print an array in Python.

Look at the example below carefully.

import numpy as np

arr = np.array()
arr_2d = np.array(,,,])

#printing the numpy array
print("The Numpy Array is : ")
for i in arr:
    print(i, end = ' ')

#printing the numpy 2D-Array
print("\nThe Numpy 2D-Array is:")
for i in arr_2d:
    for j in i:
        print(j, end=" ")
    print()

Output:

The Numpy Array is : 
11 22 33 44 
The Numpy 2D-Array is:
90 20 
76 45 
44 87 
73 81

Here also we print the NumPy array elements in our desired way(without brackets) by accessing the elements of the 1D and 2D array individually.

Добавьте массив NumPy в другой

Вы можете добавить массив NumPy в другой массив NumPy с помощью метода append ().

Рассмотрим следующий пример:

import numpy
 
a = numpy.array()
 
b = numpy.array()
 
newArray = numpy.append(a, b)
 
print("The new array = ", newArray)

В этом примере создается массив NumPy “a”, а затем создается другой массив с именем “b”. Затем мы использовали метод append() и передали два массива. Поскольку массив “b” передается в качестве второго аргумента, он добавляется в конце массива “a”.

Как мы видели, работа с массивами NumPy очень проста. Массивы NumPy очень важны при работе с большинством библиотек машинного обучения. Итак, мы можем сказать, что NumPy-это ворота в искусственный интеллект.

Вопрос 10. Как объединить два списка в список кортежей?

Сложность: (> ⌒ <)

Для объединения двух списков в список кортежей можно использовать функцию zip, причём не только для двух, но и для трёх и более списков. Это полезно для формирования, например, матриц из векторов.

В первых двух строчках мы создали два списка, которые надо объединить. В третьей с помощью конструкции, похожей на двойной генератор, создали список, состоящий из кортежей вида (k, v), где k и v берутся из двух наших списков с помощью функции zip(). К слову, она не зря носит такое название: в переводе zip означает «застёжка-молния», и эта функция как бы сшивает два списка в один.

Introduction

In this tutorial, we’ll go over the different methods to reverse an array in Python. The Python language does not come with array data structure support. Instead, it has in-built list structures that are easy to use as well as provide some methods to perform operations.

We can continue to use the typical Arrays in Python by import a module like Array or NumPy. Our tutorial is going to be divided into three parts, each dealing with reversing individual Array types in Python. They are,

  • Reversing an Array List in Python,
  • Reversing an Array of Array Module in Python,
  • Reversing a NumPy Array in Python.

Now let us get right into the topic.

Массивы в Python

Python массивы и списки представляют собой простой набор связанных значений, которые называются элементами. Обычно это любой тип данных, включая объекты или другие списки! При работе с массивами все данные должны быть одинаковыми — нельзя хранить вместе строки и целые числа. Вам почти всегда придется указывать, сколько элементов нужно хранить. Динамические массивы существуют, но проще начать с массивов фиксированной длиной.

Python несколько усложняет ситуацию. Он не всегда придерживается строгих определений структур данных. Большинство объектов в Python обычно являются списками, поэтому создавая массив, вы проделываете больше работы. Вот начальный код:

from array import array
numbers = array('i', )
print numbers

Первая строка импортирует модуль array, необходимый для работы с массивами. Вторая строка создает новый массив numbers и инициализирует его значениями 2, 4, 6 и 8. Каждому элементу присваивается целочисленное значение, называемое ключом или индексом. Ключи начинаются с нуля, поэтому будет обращаться к первому элементу (2):

itypecodePythonPythonPythonC-массивахPython

Нельзя хранить элементы разных типов в этих массивах. Допустим, вы захотели сохранить строку «makeuseof.com»:

numbers = array('i', )

Это вызовет исключение при работе с Python массивом строк:

print numbers

Каждый язык программирования реализует цикл, который идеально подходит для итерации (циклизации) над элементами списка.

Наиболее распространенные циклы while и for. Python делает это еще проще, предоставляя цикл for in:

for number in numbers:
    print number

Обратите внимание на то, что вам не нужно обращаться к элементам по их ключу. Это лучший способ работы с массивом

Альтернативный способ перебора списка — это цикл for:

for i in range(len(numbers)):
    print numbers

Этот пример делает то же самое, что и предыдущий. Но в нем нужно указать количество элементов в массиве (len (cars)), а также передать i в качестве ключа. Это почти тот же код, который выполняется в цикле for in. Этот способ обеспечивает большую гибкость и выполняется немного быстрее (хотя цикла for in в большинстве случаев более чем достаточно).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector